Factorials

(MathATube.com)

The factorial of a number is the product of all the whole numbers, except zero, that are less than or equal to that number. For example, to find the factorial of 7 you would multiply together all the whole numbers, except zero, that are less than or equal to 7. Like this:
$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5,040$

The factorial of a number is shown by putting an exclamation point after that number. So, 7 ! is a way of writing "the factorial of 7" (or "7 factorial").

Here are some factorials:

$$
\begin{aligned}
& 1!=1=1 \\
& 2!=2 \times 1=2 \\
& 3!=3 \times 2 \times 1=6 \\
& 4!=4 \times 3 \times 2 \times 1=24 \\
& 5!=5 \times 4 \times 3 \times 2 \times 1=120 \\
& 6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720 \\
& 7!=7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=5,040 \\
& 8!=8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=40,320 \\
& 9!=9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=362,880 \\
& 10!=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=3,628,800 \\
& 11!=11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=39,916,800 \\
& 12!=12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=479,001,600
\end{aligned}
$$

Factorials are useful. They can show how many different ways there are to order or arrange a set of things. For example, if you have 5 books on a shelf, and want to know how many different ways there are to order or arrange them, simply find the factorial of 5:
$5!=5 \times 4 \times 3 \times 2 \times 1=120$ This shows that you can arrange 5 books 120 different ways.

